控制网复测平面基准归算程序(包含控制网复测平面基准计算,平面控制网稳定性计算,水准测段高差稳定计算三个程序功能)
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148
  1. import time
  2. import openpyxl
  3. import pandas as pd
  4. import sqlite3
  5. import os
  6. from PySide6.QtWidgets import QMessageBox
  7. from openpyxl.styles import Font, NamedStyle, Alignment
  8. from openpyxl.utils.dataframe import dataframe_to_rows
  9. def main_function(ui, file_path, utf_en, db_path):
  10. export_folder = os.path.dirname(file_path)
  11. if not os.path.exists(export_folder):
  12. os.makedirs(export_folder)
  13. # 连接数据库
  14. conn = sqlite3.connect(db_path)
  15. try:
  16. # 查询数据库表为DataFrame,添加 TableName 条件
  17. query = "SELECT * FROM GC_Output_Point WHERE TableName=?"
  18. df = pd.read_sql_query(query, conn, params=(utf_en,))
  19. # 检查是否有匹配的数据
  20. if df.empty:
  21. QMessageBox.warning(ui, '警告', '没有找到匹配的数据进行导出')
  22. conn.close()
  23. return
  24. # 假设 TableName 字段是以字节序列存储的 UTF-8 编码字符串
  25. if 'TableName' in df.columns:
  26. try:
  27. df['TableName'] = df['TableName'].apply(lambda x: x.decode('utf-8') if isinstance(x, bytes) else x)
  28. except Exception as e:
  29. QMessageBox.critical(ui, '错误', f'TableName 字段解码失败: {str(e)}')
  30. conn.close()
  31. return
  32. # 删除 TableName 列
  33. if 'TableName' in df.columns:
  34. df.drop(columns=['TableName'], inplace=True)
  35. # new HDiff 保留小数点后6位
  36. if 'New_HDiff' in df.columns:
  37. df['New_HDiff'] = df['New_HDiff'].round(6)
  38. # New_RLen 保留小数点后6位
  39. if 'New_RLen' in df.columns:
  40. df['New_RLen'] = df['New_RLen'].round(6)
  41. # Correct_Factor 保留小数点后2位
  42. if 'Correct_Factor' in df.columns:
  43. df['Correct_Factor'] = df['Correct_Factor'].round(2)
  44. # Period_Diff 保留小数点后2位
  45. if 'Period_Diff' in df.columns:
  46. df['Period_Diff'] = df['Period_Diff'].round(2)
  47. # 重命名指定的列
  48. column_mapping = {
  49. 'New_ID': '序号',
  50. 'New_ResultName': '结果期数',
  51. 'New_SPName': '起点',
  52. 'New_EPName': '终点',
  53. 'New_HDiff': '高差',
  54. 'New_RLen': '路线长',
  55. 'Correct_Factor': '修正数',
  56. 'Period_Diff': '期间差异',
  57. 'Dis_Ass': '变形判定'
  58. }
  59. df.rename(columns=column_mapping, inplace=True)
  60. # 查询 GC_Input_Param 表获取 Correct_Factor 字段
  61. query_param = "SELECT Correct_Factor FROM GC_Input_Param WHERE TableName=?"
  62. correct_factor_df = pd.read_sql_query(query_param, conn, params=(utf_en,))
  63. correct_factor = correct_factor_df.iloc[0]['Correct_Factor']
  64. # 创建一个新的 Excel 工作簿
  65. from openpyxl import Workbook
  66. wb = Workbook()
  67. ws = wb.active
  68. # # 在最上面插入一行
  69. # ws.insert_rows(1)
  70. # 在E1单元格添加内容“修正系数”
  71. ws.cell(row=1, column=1, value="序号")
  72. ws.cell(row=1, column=2, value="结果期数")
  73. ws.cell(row=1, column=3, value="起点")
  74. ws.cell(row=1, column=4, value="终点")
  75. ws.cell(row=1, column=5, value="修正系数")
  76. ws.cell(row=1, column=6, value=correct_factor)
  77. ws.cell(row=1, column=7, value="修正数")
  78. ws.cell(row=1, column=8, value="期间差异")
  79. ws.cell(row=1, column=9, value="变形判定")
  80. # 将 DataFrame 写入工作表
  81. for r in dataframe_to_rows(df, index=False, header=True):
  82. ws.append(r)
  83. # 定义自定义样式
  84. style_0_000000 = NamedStyle(name="style_0_000000", number_format='0.000000')
  85. style_0_00 = NamedStyle(name="style_0_00", number_format='0.00')
  86. # 添加样式到工作簿
  87. wb.add_named_style(style_0_000000)
  88. wb.add_named_style(style_0_00)
  89. # 应用样式到相应列
  90. hdiff_col_index = df.columns.get_loc('高差') + 1 # 获取“高差”列的索引(+1 因为 Excel 列索引从 1 开始)
  91. rlen_col_index = df.columns.get_loc('路线长') + 1 # 获取“路线长”列的索引
  92. correct_factor_col_index = df.columns.get_loc('修正数') + 1 # 获取“修正数”列的索引
  93. period_diff_col_index = df.columns.get_loc('期间差异') + 1 # 获取“期间差异”列的索引
  94. for row in range(2, ws.max_row + 1): # 从第二行开始,因为第一行为标题行
  95. ws.cell(row=row, column=hdiff_col_index).style = style_0_000000
  96. ws.cell(row=row, column=rlen_col_index).style = style_0_000000
  97. ws.cell(row=row, column=correct_factor_col_index).style = style_0_00
  98. ws.cell(row=row, column=period_diff_col_index).style = style_0_00
  99. # 设置 Dis_Ass 列为“变形”的行的字体颜色为红色
  100. red_font = Font(color="FF0000")
  101. dis_ass_col_index = df.columns.get_loc('变形判定') + 1 # 获取“变形判定”列的索引
  102. for row in range(2, ws.max_row + 1): # 从第二行开始,因为第一行为标题行
  103. cell_value = ws.cell(row=row, column=dis_ass_col_index).value
  104. if cell_value == '变形':
  105. for col in range(1, ws.max_column + 1):
  106. ws.cell(row=row, column=col).font = red_font
  107. # 设置列宽
  108. ws.column_dimensions['E'].width = 12
  109. ws.column_dimensions['F'].width = 12
  110. # 保存 Excel 文件之前添加单元格合并操作
  111. merge_cells = ['A1:A2', 'B1:B2', 'C1:C2', 'D1:D2', 'G1:G2', 'H1:H2', 'I1:I2']
  112. for cell_range in merge_cells:
  113. ws.merge_cells(cell_range)
  114. # 设置合并单元格后的居中对齐
  115. for cell_range in merge_cells:
  116. cell = ws[cell_range.split(':')[0]]
  117. cell.alignment = Alignment(horizontal='center', vertical='center')
  118. # 保存 Excel 文件
  119. excel_filename = f"水准测段高差计算成果表{time.strftime('%Y%m%d_%H%M%S')}.xlsx"
  120. excel_filepath = os.path.join(export_folder, excel_filename)
  121. wb.save(excel_filepath)
  122. QMessageBox.information(ui, '成功', f'成果文件已成功导出到 {export_folder}')
  123. except Exception as e:
  124. QMessageBox.critical(ui, '错误', f'导出过程中发生错误: {str(e)}')
  125. finally:
  126. # 关闭数据库连接
  127. conn.close()